- 日歷中的數(shù)學(xué)教學(xué)設(shè)計 推薦度:
- 高一數(shù)學(xué)教學(xué)總結(jié) 推薦度:
- 高一數(shù)學(xué)教學(xué)反思 推薦度:
- 高一數(shù)學(xué)教學(xué)計劃 推薦度:
- 高中數(shù)學(xué)教學(xué)設(shè)計 推薦度:
- 相關(guān)推薦
高一數(shù)學(xué)教學(xué)設(shè)計
作為一位杰出的老師,就有可能用到教學(xué)設(shè)計,借助教學(xué)設(shè)計可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。你知道什么樣的教學(xué)設(shè)計才能切實有效地幫助到我們嗎?以下是小編幫大家整理的高一數(shù)學(xué)教學(xué)設(shè)計,歡迎閱讀,希望大家能夠喜歡。
高一數(shù)學(xué)教學(xué)設(shè)計1
課題:
《直線與平面垂直的性質(zhì)》
課時:
11
學(xué)習(xí)目標(biāo):
探究線面垂直的性質(zhì)定理,培養(yǎng)學(xué)生的空間想象能力;
掌握性質(zhì)定理的應(yīng)用,提高邏輯推理能力。
重點 難點:
線面垂直的性質(zhì)定理及其應(yīng)用
學(xué)習(xí)過程:
復(fù)習(xí)鞏固:直線與平面垂直的判定定理是什么?
學(xué)習(xí)新知:
1、注意觀察右面兩個圖,在長方體ABCD-A’B’C’D”中,棱AA’、BB’、CC’、DD’都與平面ABCD垂直,它們之間具有什么什么關(guān)系?
2、右圖中,已知直線a,b和平面α,如果a⊥α,b⊥α那么直線a,b是否平行呢?
直線與平面垂直的性質(zhì)定理:
一般地,我們得到直線與平面垂直的性質(zhì)定理
定理:(文字語言) 垂直于同一平面的兩條直線平行。
?。ǚ栒Z言)
a⊥α, b⊥α? a∥b
O (圖形語言)如圖: 判定兩條直線平行的方法很多,直線與平面垂直的定理告訴我們,可以由兩條直線與一個平面垂直判定兩條直線平行。直線與平面垂直的性質(zhì)定理揭示了“平行”與“垂直”之間的內(nèi)在聯(lián)系。
3、直線與平面垂直的性質(zhì)的應(yīng)用
例4、設(shè)直線a,b分別在正方體ABCD-A’B’C’D”中兩個不同的平面內(nèi),欲使a∥b,則a,b應(yīng)滿足什么條件?
解:a,b滿足下面條件中的任何一個,都能使a∥b,
?。?)a,b同垂直于正方體一個面;
?。?)a,b分別在正方體兩個相對的面內(nèi)且共面;
?。?)a,b平行于同一條棱;
?。?)如圖,E,F(xiàn),G,H分別為B’C’,CC’,AA’,AD的中點,EF所在的直線為a,GH所在直線為b,等等。
思考:你還能找出其他一些條件嗎?
練習(xí)p42 1, 2
作業(yè):P43
高一數(shù)學(xué)教學(xué)設(shè)計2
一、本節(jié)內(nèi)容在教材中的地位與作用:
《函數(shù)的單調(diào)性》系人教版高中數(shù)學(xué)必修一的內(nèi)容,該內(nèi)容包括函數(shù)的單調(diào)性的定義與判斷及其證明。在初中學(xué)習(xí)函數(shù)時,借助圖像的直觀性研究了一些函數(shù)的增減性.這節(jié)內(nèi)容是初中有關(guān)內(nèi)容的深化、延伸和提高.這節(jié)通過對具體函數(shù)圖像的歸納和抽象,概括出函數(shù)在某個區(qū)間上是增函數(shù)或減函數(shù)的準(zhǔn)確含義,明確指出函數(shù)的增減性是相對于某個區(qū)間來說的.教材中判斷函數(shù)的增減性,既有從圖像上進行觀察的直觀方法,又有根據(jù)其定義進行邏輯推理的嚴(yán)格方法,最后將兩種方法統(tǒng)一起來,形成根據(jù)觀察圖像得出猜想結(jié)論,進而用推理證明猜想的體系.函數(shù)的單調(diào)性是函數(shù)眾多性質(zhì)中的重要性質(zhì)之一,函數(shù)的單調(diào)性一節(jié)中的知識是前一節(jié)內(nèi)容函數(shù)的概念和圖像知識的延續(xù),它和后面的函數(shù)奇偶性,合稱為函數(shù)的簡單性質(zhì),是今后研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)及其他函數(shù)單調(diào)性的理論基礎(chǔ);在解決函數(shù)值域、定義域、不等式、比較兩數(shù)大小等具體問題中均需用到函數(shù)的單調(diào)性;同時在這一節(jié)中利用函數(shù)圖象來研究函數(shù)性質(zhì)的數(shù)形結(jié)合思想將貫穿于我們整個高中數(shù)學(xué)教學(xué)。
二、學(xué)情、教法分析:
按現(xiàn)行新教材結(jié)構(gòu)體系,學(xué)生只學(xué)過一次函數(shù)、二次函數(shù)、反比例函數(shù),所以對函數(shù)的單調(diào)性研究也只能限于這幾種函數(shù)。依據(jù)現(xiàn)有認(rèn)知結(jié)構(gòu),學(xué)生只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大,函數(shù)值增大”的變化趨勢,而不能用符號語言進行嚴(yán)密的代數(shù)證明,只能依據(jù)形的直觀性進行感性判斷而不能進行“思辯”的理性認(rèn)識。所以在教學(xué)中要找準(zhǔn)學(xué)生學(xué)習(xí)思維的“最近發(fā)展區(qū)”進行有意義的建構(gòu)教學(xué)。在教學(xué)過程中,要注意學(xué)生第一次接觸代數(shù)形式的證明,為使學(xué)生能迅速掌握代數(shù)證明的格式,要注意讓學(xué)生在內(nèi)容上緊扣定義貫穿整個學(xué)習(xí)過程,在形式上要從有意識的模仿逐漸過渡到獨立的證明。
三、教學(xué)目標(biāo)與教學(xué)重、難點的制定:
依據(jù)課程標(biāo)準(zhǔn)的具體要求以及基于教材內(nèi)容的具體分析,制定本節(jié)課的教學(xué)目標(biāo)為:
1.通過函數(shù)單調(diào)性的學(xué)習(xí),讓學(xué)生通過自主探究活動,體會數(shù)學(xué)概念的形成過程的真諦,學(xué)會運用函數(shù)圖像理解和研究函數(shù)的性質(zhì)。
2.理解并掌握函數(shù)的單調(diào)性及其幾何意義,掌握用定義證明函數(shù)的單調(diào)性的步驟,會求函數(shù)的單調(diào)區(qū)間,提高應(yīng)用知識解決問題的能力。
3.能夠用函數(shù)的性質(zhì)解決生活中簡單的實際問題,使學(xué)生感受到學(xué)習(xí)單調(diào)性的必要性與重要性,增強學(xué)生學(xué)習(xí)函數(shù)的緊迫感,激發(fā)其積極性。
在本節(jié)課的教學(xué)中以函數(shù)的單調(diào)性的概念為線,它始終貫穿于教師的整個課堂教學(xué)過程和學(xué)生的學(xué)習(xí)過程;利用函數(shù)的單調(diào)性的定義證明簡單函數(shù)的單調(diào)性是對函數(shù)單調(diào)性概念的深層理解,且“取值、作差與變形、判斷、結(jié)論”過程學(xué)生不易掌握。所以對教學(xué)的重點、難點確定如下:
教學(xué)重點:函數(shù)的單調(diào)性的判斷與證明;
教學(xué)難點:增、減函數(shù)形式化定義的形成及利用函數(shù)單調(diào)性的定義證明簡單函數(shù)的單調(diào)性。
四、教材內(nèi)容簡析:
本節(jié)主要內(nèi)容如下:
(1)單調(diào)性的相關(guān)定義:一般地,設(shè)函數(shù)的定義域為I,區(qū)間AI:如果對于區(qū)間A內(nèi)的任意兩個值,當(dāng)時都有,那么就說在區(qū)間A上是增加(減少)的。此時,A是單調(diào)遞增(遞減)區(qū)間。
注:關(guān)鍵詞:“區(qū)間AI:”、“任意”、“都”。區(qū)間AI表明判斷函數(shù)單調(diào)性首先判斷函數(shù)的定義域,“任意”表明不可以用兩個特定的值來確定函數(shù)是增函數(shù)還是減函數(shù),但是可以用來否定函數(shù)是增函數(shù)或者否定函數(shù)是減函數(shù),“都”表示單調(diào)區(qū)間中的每一個值無一例外。
如果函數(shù)在定義域的某個子集上是增加或減少的,那么就稱這個函數(shù)在這個子集上具有單調(diào)性。如果函數(shù)在定義域是增加或減少的,那么就分別稱這個函數(shù)為增函數(shù)或減函數(shù),統(tǒng)稱為單調(diào)函數(shù)。
(2)單調(diào)性的判斷與證明:
?、賳握{(diào)性的判斷:圖像法、定義法;(注:兩個單調(diào)區(qū)間的“并”不一定是單調(diào)區(qū)間。)
?、趩握{(diào)性的證明步驟歸結(jié)為五個步驟:取值、作差與變形、判斷、結(jié)論。
高一數(shù)學(xué)教學(xué)設(shè)計3
一、教學(xué)目標(biāo)
2、 過程與方法目標(biāo):通過讓學(xué)生探 究點、線、面之間的相互關(guān)系,掌握文字語言、符號語言、圖示語 言之間的相互轉(zhuǎn)化。
3、 情感、態(tài)度與價值目標(biāo):通過用集合論 的觀點和運動的觀點討論點、線、面、體之間的相互關(guān)系培養(yǎng)學(xué)生會從多角度,多方面觀察和分析問題,體會將理論知識和現(xiàn)實生活建立聯(lián)系的快樂,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
二、教學(xué)重點和難點
重點:點、線、面之間的相互關(guān)系,以及文字語言、符號語言、圖示語言之間的相互轉(zhuǎn)化。
難點:從集合的角度理解點、線、面之間的相互關(guān)系。
三、教學(xué)方法和教學(xué)手段
在上課前將問題用學(xué)案的形式發(fā)給各組學(xué)生,讓學(xué)生先在課下研究探討,在課上以小組為單位就學(xué)案中的問題展開討論并發(fā)表自己組的研究結(jié)果,并引導(dǎo)同學(xué)展開爭論,同時利用課件給 同學(xué)一個直觀的展示,然后得出結(jié)論。下附學(xué)生的學(xué)案
四、教學(xué)過程
教學(xué)環(huán)節(jié) 教學(xué)內(nèi)容 師生互動 設(shè)計意圖
課題引入 讓同學(xué)們觀察幾個幾何體,從感性上對幾何體有個初步的認(rèn)識,并總結(jié)出空間立體幾何研究的幾個基本元素。 學(xué)生觀察、討論、總結(jié),教師引導(dǎo)。 提高學(xué)生的學(xué)習(xí)興趣
新課講解
基礎(chǔ)知識
能力拓展
探索研究 一、構(gòu)成幾何體的基本元素。
點、線、面
二、從集合的角度解釋點、線、面、體之間的相互關(guān)系。
點是元素,直線是點的集合,平面是點的集合,直線是平面的子集。
三、從運動學(xué)的角度解釋點、線、面、體之間的相互關(guān)系。
1、 點運動成直線和曲線。
2、 直線有兩種運動方式:平行移動和繞點轉(zhuǎn)動。
3、 平行移動形成平面和曲面。
4、 繞點轉(zhuǎn)動形成平面和曲面。
5、 注意直線的兩種運動方式形成的曲面的區(qū)別。
6、 面運動成體。
四、點、線、面、之間的相互位置關(guān)系。
1、 點和線的位置關(guān)系。
點A
2、 點和面的位置關(guān)系。
3、 直線和直線的位置關(guān)系。
4 、 直線和平面的位置關(guān)系。
5、 平面和平面的位置關(guān)系。 通過對幾何體的觀察、討論由學(xué)生自己總結(jié)。
引領(lǐng)學(xué)生回憶元素、集合的相互關(guān)系,討論、歸納點、線、面之間的相互關(guān)系。
通過課件演示及學(xué)生的討論,得出從 運動學(xué)的角度發(fā)現(xiàn)點、線、面之間的相互關(guān)系。
引導(dǎo)學(xué)生由生活中的實際例子總結(jié)出點、線、面之間的相互位置關(guān)系,讓學(xué)生有個感性認(rèn)識。 培養(yǎng)學(xué)生的觀察能力。
培養(yǎng)學(xué)生將所學(xué)知識建立相互聯(lián)系的能力。
讓學(xué)生在觀察中發(fā)現(xiàn)點、線、面之間的相互運動規(guī)律,為以后學(xué)習(xí)幾何體奠定基礎(chǔ)。
培養(yǎng)學(xué)生將學(xué)習(xí)聯(lián)系實際的習(xí)慣,鍛煉學(xué)生由感性認(rèn)識上升為理性知識的能力。
課堂小結(jié) 1、 學(xué)習(xí)了構(gòu)成幾何體的基本元素。
2、 掌握了點、線、面之間的相互關(guān)系。
3、 了解了點、線、面之間的相互的位置關(guān)系。 由學(xué)生總結(jié)歸納。 培養(yǎng)學(xué)生總結(jié)、歸納、反思的學(xué)習(xí)習(xí)慣。
課后作業(yè) 試著畫出點、線、面之間的幾種位置關(guān)系。 學(xué)生課后研究完成。 檢驗學(xué)生上課的聽課效果及觀察能力。
附:1.1.1構(gòu)成空間幾何體的基本元素學(xué)案
(一)、基礎(chǔ)知識
1、 幾何體:________________________________________________________________
2、 長方體:________________________________ ___________________________ _____
3、 長方體的面:____________________________________________________________
4、 長方體的棱: ____________________________________________________________
5、 長方體的頂點:__________________________________________________________
6、 構(gòu)成幾何體的基本元素:__________________________________________________
7、 你能說出構(gòu)成幾何體的 幾個基本元素之間的關(guān)系嗎?
(二)、能力拓展
1、 如果點做連續(xù)運動,運動出來的軌跡可能是______________________ 因此點是立體幾何中的最基本的元素,如果點運動的方向不變,則運動的軌跡是_____________ 如果點運動的軌跡改變,則運動的軌跡是________ ____ 試舉幾個日常生活中點運動成線的例子___ ________________________________
2、 在空間中你認(rèn)為直線有幾種運動方式_______________________________________分別形成_______________________________________________________你能舉幾個日常生活中的例子嗎?
3、 你知道直線和線段的區(qū)別嗎?_______________________________________如果是線段做上述運動,結(jié)果如何?_______________________________________.現(xiàn)在你能總結(jié)出平面和面的區(qū)別嗎?______________________________________________
(三)、探索與研究
1、 構(gòu)成幾何體的基本元素是_________,__________,____________.
2、 點和線能有幾種位置關(guān)系_________________________你能畫圖說明嗎?
3、 點和平面能有幾種位置關(guān)系_______________________你能畫圖說明嗎?
4、 直線和直線能有幾種位置關(guān)系________________________你能畫圖說明嗎?
高一數(shù)學(xué)教學(xué)設(shè)計4
(一)教學(xué)目標(biāo)
1.知識與技能
(1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集和交集.
(2)能使用Venn圖表示集合的并集和交集運算結(jié)果,體會直觀圖對理解抽象概念的作用。
(3)掌握的關(guān)的術(shù)語和符號,并會用它們正確進行集合的并集與交集運算。
2.過程與方法
通過對實例的分析、思考,獲得并集與交集運算的法則,感知并集和交集運算的實質(zhì)與內(nèi)涵,增強學(xué)生發(fā)現(xiàn)問題,研究問題的創(chuàng)新意識和能力.
3.情感、態(tài)度與價值觀
通過集合的并集與交集運算法則的發(fā)現(xiàn)、完善,增強學(xué)生運用數(shù)學(xué)知識和數(shù)學(xué)思想認(rèn)識客觀事物,發(fā)現(xiàn)客觀規(guī)律的興趣與能力,從而體會數(shù)學(xué)的應(yīng)用價值.
(二)教學(xué)重點與難點
重點:交集、并集運算的含義,識記與運用.
難點:弄清交集、并集的含義,認(rèn)識符號之間的區(qū)別與聯(lián)系
(三)教學(xué)方法
在思考中感知知識,在合作交流中形成知識,在獨立鉆研和探究中提升思維能力,嘗試實踐與交流相結(jié)合.
(四)教學(xué)過程
教學(xué)環(huán)節(jié) 教學(xué)內(nèi)容 師生互動 設(shè)計意圖
提出問題引入新知 思考:觀察下列各組集合,聯(lián)想實數(shù)加法運算,探究集合能否進行類似“加法”運算.
(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}
(2)A = {x | x是有理數(shù)},
B = {x | x是無理數(shù)},
C = {x | x是實數(shù)}.
師:兩數(shù)存在大小關(guān)系,兩集合存在包含、相等關(guān)系;實數(shù)能進行加減運算,探究集合是否有相應(yīng)運算.
生:集合A與B的元素合并構(gòu)成C.
師:由集合A、B元素組合為C,這種形式的組合就是為集合的并集運算. 生疑析疑,
導(dǎo)入新知
形成
概念
思考:并集運算.
集合C是由所有屬于集合A或?qū)儆诩螧的元素組成的,稱C為A和B的并集.
定義:由所有屬于集合A或集合B的元素組成的集合. 稱為集合A與B的并集;記作:A∪B;讀作A并B,即A∪B = {x | x∈A,或x∈B},Venn圖表示為:
師:請同學(xué)們將上述兩組實例的共同規(guī)律用數(shù)學(xué)語言表達出來.
學(xué)生合作交流:歸納→回答→補充或修正→完善→得出并集的定義. 在老師指導(dǎo)下,學(xué)生通過合作交流,探究問題共性,感知并集概念,從而初步理解并集的含義.
應(yīng)用舉例 例1 設(shè)A = {4,5,6,8},B = {3,5,7,8},求A∪B.
例2 設(shè)集合A = {x | –1
例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.
例2解:A∪B = {x |–1
師:求并集時,兩集合的相同元素如何在并集中表示.
生:遵循集合元素的互異性.
師:涉及不等式型集合問題.
注意利用數(shù)軸,運用數(shù)形結(jié)合思想求解.
生:在數(shù)軸上畫出兩集合,然后合并所有區(qū)間. 同時注意集合元素的互異性. 學(xué)生嘗試求解,老師適時適當(dāng)指導(dǎo),評析.
固化概念
提升能力
探究性質(zhì) ①A∪A = A, ②A∪ = A,
③A∪B = B∪A,
?、?∪B, ∪B.
老師要求學(xué)生對性質(zhì)進行合理解釋. 培養(yǎng)學(xué)生數(shù)學(xué)思維能力.
形成概念 自學(xué)提要:
①由兩集合的所有元素合并可得兩集合的并集,而由兩集合的公共元素組成的集合又會是兩集合的一種怎樣的運算?
?、诮患\算具有的運算性質(zhì)呢?
交集的定義.
由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集;記作A∩B,讀作A交B.
即A∩B = {x | x∈A且x∈B}
Venn圖表示
老師給出自學(xué)提要,學(xué)生在老師的引導(dǎo)下自我學(xué)習(xí)交集知識,自我體會交集運算的含義. 并總結(jié)交集的性質(zhì).
生:①A∩A = A;
?、贏∩ = ;
?、跘∩B = B∩A;
?、蹵∩ ,A∩ .
師:適當(dāng)闡述上述性質(zhì).
自學(xué)輔導(dǎo),合作交流,探究交集運算. 培養(yǎng)學(xué)生的自學(xué)能力,為終身發(fā)展培養(yǎng)基本素質(zhì).
應(yīng)用舉例 例1 (1)A = {2,4,6,8,10},
B = {3,5,8,12},C = {8}.
(2)新華中學(xué)開運動會,設(shè)
A = {x | x是新華中學(xué)高一年級參加百米賽跑的同學(xué)},
B = {x | x是新華中學(xué)高一年級參加跳高比賽的同學(xué)},求A∩B.
例2 設(shè)平面內(nèi)直線l1上點的集合為L1,直線l2上點的集合為L2,試用集合的運算表示l1,l2的位置關(guān)系. 學(xué)生上臺板演,老師點評、總結(jié).
例1 解:(1)∵A∩B = {8},
∴A∩B = C.
(2)A∩B就是新華中學(xué)高一年級中那些既參加百米賽跑又參加跳高比賽的同學(xué)組成的集合. 所以,A∩B = {x | x是新華中學(xué)高一年級既參加百米賽跑又參加跳高比賽的同學(xué)}.
例2 解:平面內(nèi)直線l1,l2可能有三種位置關(guān)系,即相交于一點,平行或重合.
(1)直線l1,l2相交于一點P可表示為 L1∩L2 = {點P};
(2)直線l1,l2平行可表示為
L1∩L2 = ;
(3)直線l1,l2重合可表示為
L1∩L2 = L1 = L2. 提升學(xué)生的動手實踐能力.
歸納總結(jié) 并集:A∪B = {x | x∈A或x∈B}
交集:A∩B = {x | x∈A且x∈B}
性質(zhì):①A∩A = A,A∪A = A,
?、贏∩ = ,A∪ = A,
③A∩B = B∩A,A∪B = B∪A. 學(xué)生合作交流:回顧→反思→總理→小結(jié)
老師點評、闡述 歸納知識、構(gòu)建知識網(wǎng)絡(luò)
課后作業(yè) 1.1第三課時 習(xí)案 學(xué)生獨立完成 鞏固知識,提升能力,反思升華
備選例題
例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.
【解析】法一:∵A∩B = {–2},∴–2∈B,
∴a – 1 = –2或a + 1 = –2,
解得a = –1或a = –3,
當(dāng)a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.
當(dāng)a = –3時,A = {–1,10,6},A不合要求,a = –3舍去
∴a = –1.
法二:∵A∩B = {–2},∴–2∈A,
又∵a2 + 1≥1,∴a2 – 3 = –2,
解得a =±1,
當(dāng)a = 1時,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.
當(dāng)a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.
例2 集合A = {x | –1
(1)若A∩B = ,求a的取值范圍;
(2)若A∪B = {x | x<1},求a的取值范圍.
【解析】(1)如下圖所示:A = {x | –1
∴數(shù)軸上點x = a在x = – 1左側(cè).
∴a≤–1.
(2)如右圖所示:A = {x | –1
∴數(shù)軸上點x = a在x = –1和x = 1之間.
∴–1
例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何實數(shù)時,A∩B 與A∩C = 同時成立?
【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.
由A∩B 和A∩C = 同時成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 將3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.
當(dāng)a = 5時,A = {x | x2 – 5x + 6 = 0} = {2,3},此時A∩C = {2},與題設(shè)A∩C = 相矛盾,故不適合.
當(dāng)a = –2時,A = {x | x2 + 2x – 15 = 0} = {3,5},此時A∩B 與A∩C = ,同時成立,∴滿足條件的實數(shù)a = –2.
例4 設(shè)集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.
【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.
當(dāng)x = 3時,A = {9,5,– 4},B = {–2,–2,9},B中元素違背了互異性,舍去.
當(dāng)x = –3時,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}滿足題意,故A∪B = {–7,– 4,–8,4,9}.
當(dāng)x = 5時,A = {25,9,– 4},B = {0,– 4,9},此時A∩B = {– 4,9}與A∩B = {9}矛盾,故舍去.
綜上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.
高一數(shù)學(xué)教學(xué)設(shè)計5
一、指導(dǎo)思想
準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項基本要求,立足于基礎(chǔ)知識和基本技能的教學(xué),注重滲透數(shù)學(xué)思想和方法。針對學(xué)生實際,不斷研究數(shù)學(xué)教學(xué),改進教法,指導(dǎo)學(xué)法,奠定立足社會所需要的必備的基礎(chǔ)知識、基本技能和基本能力,著力于培養(yǎng)學(xué)生的創(chuàng)新精神,運用數(shù)學(xué)的意識和能力,奠定他們終身學(xué)習(xí)的基礎(chǔ)。
二、高一上冊數(shù)學(xué)教學(xué)教材特點:
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)(A版)》,它在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借簽、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時代性、典型性和可接受性等,具有如下特點:
1.親和力:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情.
2.問題性:以恰時恰點的問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神.
3.科學(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強調(diào)類比、化歸等思想方法的運用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神.
4.時代性與應(yīng)用性:以具有時代感和現(xiàn)實感的素材創(chuàng)設(shè)情境,加強數(shù)學(xué)活動,發(fā)展應(yīng)用意識.
三、高一上冊數(shù)學(xué)教學(xué)教法分析:
1.選取與內(nèi)容密切相關(guān)的、典型的、豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個究竟的沖動,以達到培養(yǎng)其興趣的目的.
2.通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動,切實改進學(xué)生的學(xué)習(xí)方式.
3.在教學(xué)中強調(diào)類比、化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣.
四、學(xué)情分析
高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著.他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長.面對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望.我們要從學(xué)生的認(rèn)識水平和實際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡.從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法.
五、高一上冊數(shù)學(xué)教學(xué)教學(xué)措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣.由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進步。
2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考.
3、加強培養(yǎng)學(xué)生的邏輯思維能力和解決實際問題的能力,提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進行辨證唯物主義教育.
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力.
5、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng).
高一數(shù)學(xué)教學(xué)設(shè)計6
教學(xué)類型:探究研究型
設(shè)計思路:通過一系列的猜想得出德.摩根律,但是這個結(jié)論僅僅是猜想,數(shù)學(xué)是一門科學(xué),所以需要論證它的正確性,因此本節(jié)通過剖析維恩圖的四部分來驗證猜想的正確性,并對德摩根律進行簡單的應(yīng)用,因此我們制作了本微課.
教學(xué)過程:
一、片頭
?。?0秒以內(nèi))
內(nèi)容:你好,現(xiàn)在讓我們一起來學(xué)習(xí)《集合的運算——自己探索也能發(fā)現(xiàn)的數(shù)學(xué)規(guī)律(第二講)》。
第 1 張PPT
12秒以內(nèi)
二、正文講解
?。?分20秒左右)
1.引入:牛頓曾說過:“沒有大膽的猜測,就做不出偉大的發(fā)現(xiàn)。”
上節(jié)課老師和大家學(xué)習(xí)了集合的運算,得出了一個有趣的規(guī)律。課后,你舉例驗證了這個規(guī)律嗎?
那么,這個規(guī)律是偶然的,還是一個恒等式呢?
第 2 張PPT
28秒以內(nèi)
2.規(guī)律的驗證:
試用集合A,B的交集、并集、補集分別表示維恩圖中1,2,3,4及彩色部分的集合,通過剖析維恩圖來驗證猜想的正確性使用
第 3 張PPT
2分10 秒以內(nèi)
3.抽象概括: 通過我們的觀察和驗證,我們發(fā)現(xiàn)這個規(guī)律是一個恒等式。
而這個規(guī)律就是180年前著名的英國數(shù)學(xué)家德摩根發(fā)現(xiàn)的。
為了紀(jì)念他,我們將它稱為德摩根律。
原來我們通過自己的探索也能發(fā)現(xiàn)這么偉大的數(shù)學(xué)規(guī)律。
第 4 張PPT
30秒以內(nèi)
4.例題應(yīng)用:使用例題形式,將的德摩根定律的結(jié)論加以應(yīng)用,讓學(xué)生更加熟悉集合的運算
第 5 張PPT
1分20秒以內(nèi)
三、結(jié)尾
?。?0秒以內(nèi))
通過這在道題的解答,我們發(fā)現(xiàn)德摩根律為解答集合運算問題提供了更為簡便的方法。
希望你在今后的學(xué)習(xí)中,勇于探索,發(fā)現(xiàn)更多有趣的規(guī)律。
第 6 張PPT
10秒以內(nèi)
教學(xué)反思(自我評價)
學(xué)生在學(xué)習(xí)集合時會接觸到很多的集合運算,往往學(xué)生覺得這是集合中的難點,因此本節(jié)課通過一系列的猜想,以精彩的動畫展示,讓學(xué)生在直觀的環(huán)境下輕松的學(xué)習(xí),提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,并通過層層深入的講解,讓學(xué)生進一步加強對集合運算的理解和應(yīng)用能力,效果非常好.
高一數(shù)學(xué)教學(xué)設(shè)計7
本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)5》(北師大版)第一章數(shù)列第二節(jié)等差數(shù)列第一課時.?dāng)?shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用.等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣.同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法.
【教學(xué)目標(biāo)】
1. 知識與技能
?。?)理解等差數(shù)列的定義,會應(yīng)用定義判斷一個數(shù)列是否是等差數(shù)列:
?。?)賬務(wù)等差數(shù)列的通項公式及其推導(dǎo)過程:
(3)會應(yīng)用等差數(shù)列通項公式解決簡單問題。
2.過程與方法
在定義的理解和通項公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。
3.情感、態(tài)度與價值觀
通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動,培養(yǎng)學(xué)生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。
【教學(xué)重點】
①等差數(shù)列的概念;②等差數(shù)列的通項公式
【教學(xué)難點】
①理解等差數(shù)列“等差”的特點及通項公式的含義;②等差數(shù)列的通項公式的推導(dǎo)過程.
【學(xué)情分析】
我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展.
【設(shè)計思路】
1.教法
①啟發(fā)引導(dǎo)法:這種方法有利于學(xué)生對知識進行主動建構(gòu);有利于突出重點,突破難點;有利于調(diào)動學(xué)生的主動性和積極性,發(fā)揮其創(chuàng)造性.
②分組討論法:有利于學(xué)生進行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學(xué)生的積極性.
③講練結(jié)合法:可以及時鞏固所學(xué)內(nèi)容,抓住重點,突破難點.
2.學(xué)法
引導(dǎo)學(xué)生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導(dǎo)出等差數(shù)列的通項公式;可以對各種能力的同學(xué)引導(dǎo)認(rèn)識多元的推導(dǎo)思維方法.
【教學(xué)過程】
一:創(chuàng)設(shè)情境,引入新課
1.從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?
2.水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18,自然放水每天水位降低2.5,最低降至5.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:)組成一個什么數(shù)列?
3.我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個什么數(shù)列?
教師:以上三個問題中的數(shù)蘊涵著三列數(shù).
學(xué)生:
1:0,5,10,15,20,25,….
2:18,15.5,13,10.5,8,5.5.
3:10072,10144,10216,10288,10360.
(設(shè)置意圖:從實例引入,實質(zhì)是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學(xué)模型.通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識的自主性,培養(yǎng)學(xué)生的歸納能力.
二:觀察歸納,形成定義
①0,5,10,15,20,25,….
?、?8,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
思考1上述數(shù)列有什么共同特點?
思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?
思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學(xué)符號語言嗎?
教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.
學(xué)生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.
教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號角度理解等差數(shù)列的定義.
?。ㄔO(shè)計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓住:“從第二項起,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準(zhǔn)確表達.)
三:舉一反三,鞏固定義
1.判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教師出示題目,學(xué)生思考回答.教師訂正并強調(diào)求公差應(yīng)注意的`問題.
注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0 .
?。ㄔO(shè)計意圖:強化學(xué)生對等差數(shù)列“等差”特征的理解和應(yīng)用).
2思考4:設(shè)數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?
?。ㄔO(shè)計意圖:強化等差數(shù)列的證明定義法)
四:利用定義,導(dǎo)出通項
1.已知等差數(shù)列:8,5,2,…,求第200項?
2.已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?
教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進行具體評價、引導(dǎo),總結(jié)推導(dǎo)方法,體會歸納思想以及累加求通項的方法;讓學(xué)生初步嘗試處理數(shù)列問題的常用方法.
?。ㄔO(shè)計意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學(xué)生善于動腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識.鼓勵學(xué)生自主解答,培養(yǎng)學(xué)生運算能力)
五:應(yīng)用通項,解決問題
1判斷100是不是等差數(shù)列2, 9,16,…的項?如果是,是第幾項?
2在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.
3求等差數(shù)列 3,7,11,…的第4項和第10項
教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.
學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補充:已知等差數(shù)列的首項和公差就可以求出其通項公式
(設(shè)計意圖:主要是熟悉公式,使學(xué)生從中體會公式與方程之間的聯(lián)系.初步認(rèn)識“基本量法”求解等差數(shù)列問題.)
六:反饋練習(xí):教材13頁練習(xí)1
七:歸納總結(jié):
1.一個定義:
等差數(shù)列的定義及定義表達式
2.一個公式:
等差數(shù)列的通項公式
3.二個應(yīng)用:
定義和通項公式的應(yīng)用
教師:讓學(xué)生思考整理,找?guī)讉€代表發(fā)言,最后教師給出補充
?。ㄔO(shè)計意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識和掌握基本概念,并靈活運用基本概念.)
【設(shè)計反思】
本設(shè)計從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動性,增強學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補充展開教學(xué),總結(jié)科學(xué)合理的知識體系,形成師生之間的良性互動,提高課堂教學(xué)效率.
高一數(shù)學(xué)教學(xué)設(shè)計8
學(xué)習(xí)目標(biāo)
1.結(jié)合二次函數(shù)的圖象,判斷一元二次方程根的存在性及根的個數(shù),從而了解函數(shù)的零點與方程根的聯(lián)系;
2.掌握零點存在的判定定理.
學(xué)習(xí)過程
一、課前準(zhǔn)備
?。A(yù)習(xí)教材P86~P88,找出疑惑之處)
復(fù)習(xí)1:一元二次方程+bx+c=0(a0)的解法.
判別式=.
當(dāng)0,方程有兩根,為;
當(dāng)0,方程有一根,為;
當(dāng)0,方程無實根.
復(fù)習(xí)2:方程+bx+c=0(a0)的根與二次函數(shù)y=ax+bx+c(a0)的圖象之間有什么關(guān)系?
判別式一元二次方程二次函數(shù)圖象
二、新課導(dǎo)學(xué)
※學(xué)習(xí)探究
探究任務(wù)一:函數(shù)零點與方程的根的關(guān)系
問題:
①方程的解為,函數(shù)的圖象與x軸有個交點,坐標(biāo)為.
?、诜匠痰慕鉃?,函數(shù)的圖象與x軸有個交點,坐標(biāo)為.
?、鄯匠痰慕鉃?,函數(shù)的圖象與x軸有個交點,坐標(biāo)為.
根據(jù)以上結(jié)論,可以得到:
一元二次方程的根就是相應(yīng)二次函數(shù)的圖象與x軸交點的.
你能將結(jié)論進一步推廣到嗎?
新知:對于函數(shù),我們把使的實數(shù)x叫做函數(shù)的零點(zeropoint).
反思:
函數(shù)的零點、方程的實數(shù)根、函數(shù)的圖象與x軸交點的橫坐標(biāo),三者有什么關(guān)系?
試試:
(1)函數(shù)的零點為;(2)函數(shù)的零點為.
小結(jié):方程有實數(shù)根函數(shù)的圖象與x軸有交點函數(shù)有零點.
探究任務(wù)二:零點存在性定理
問題:
?、僮鞒龅膱D象,求的值,觀察和的符號
②觀察下面函數(shù)的圖象,
在區(qū)間上零點;0;
在區(qū)間上零點;0;
在區(qū)間上零點;0.
新知:如果函數(shù)在區(qū)間上的圖象是連續(xù)不斷的一條曲線,并且有<0,那么,函數(shù)在區(qū)間內(nèi)有零點,即存在,使得,這個c也就是方程的根.
討論:零點個數(shù)一定是一個嗎?逆定理成立嗎?試結(jié)合圖形來分析.
※典型例題
例1求函數(shù)的零點的個數(shù).
變式:求函數(shù)的零點所在區(qū)間.
小結(jié):函數(shù)零點的求法.
?、俅鷶?shù)法:求方程的實數(shù)根;
②幾何法:對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.
※動手試試
練1.求下列函數(shù)的零點:
?。?);
(2).
練2.求函數(shù)的零點所在的大致區(qū)間.
三、總結(jié)提升
※學(xué)習(xí)小結(jié)
?、倭泓c概念;②零點、與x軸交點、方程的根的關(guān)系;③零點存在性定理
※知識拓展
圖象連續(xù)的函數(shù)的零點的性質(zhì):
?。?)函數(shù)的圖象是連續(xù)的,當(dāng)它通過零點時(非偶次零點),函數(shù)值變號.
推論:函數(shù)在區(qū)間上的圖象是連續(xù)的,且,那么函數(shù)在區(qū)間上至少有一個零點.
?。?)相鄰兩個零點之間的函數(shù)值保持同號.
學(xué)習(xí)評價
※自我評價你完成本節(jié)導(dǎo)學(xué)案的情況為().
A.很好B.較好C.一般D.較差
※當(dāng)堂檢測(時量:5分鐘滿分:10分)計分:
1.函數(shù)的零點個數(shù)為().
A.1B.2C.3D.4
2.若函數(shù)在上連續(xù),且有.則函數(shù)在上().
A.一定沒有零點B.至少有一個零點
C.只有一個零點D.零點情況不確定
3.函數(shù)的零點所在區(qū)間為().
A.B.C.D.
4.函數(shù)的零點為.
5.若函數(shù)為定義域是R的奇函數(shù),且在上有一個零點.則的零點個數(shù)為.
課后作業(yè)
1.求函數(shù)的零點所在的大致區(qū)間,并畫出它的大致圖象.
2.已知函數(shù).
?。?)為何值時,函數(shù)的圖象與軸有兩個零點;
?。?)若函數(shù)至少有一個零點在原點右側(cè),求值.
高一數(shù)學(xué)教學(xué)設(shè)計9
教學(xué)目標(biāo)
1.知識目標(biāo):正確理解現(xiàn)階段函數(shù)的概念,理解定義域的概念
2.能力目標(biāo):使學(xué)生具有使用函數(shù)模型研究生活中簡單的事物變化規(guī)律的能力。
3.情感目標(biāo):滲透數(shù)學(xué)來源于生活,運用于生活的思想。
重點讓學(xué)生理解現(xiàn)階段函數(shù)的概念,定義域的概念。
難點用函數(shù)模型去研究生活中簡單的事物變化規(guī)律時,如何確定定義域。
學(xué)情
分析授課班級為高一年級的學(xué)生,有朝氣,有活力,愛實踐,愛生活。本課之前,學(xué)生已經(jīng)學(xué)習(xí)了初中函數(shù)概念,為本課的學(xué)習(xí)打下基礎(chǔ)。
教法與學(xué)法教法:微課視頻中包含情境教學(xué)法、多媒體輔助教學(xué)法的使用。
信息化教學(xué)資源
1.動畫設(shè)計《世界在不斷的變化》
2.專業(yè)錄頻軟件;
3.視頻后期處理軟件;
4.QQ;
5.其它圖片、背景音樂。
課前準(zhǔn)備
復(fù)習(xí)初中數(shù)學(xué)函數(shù)概念
教學(xué)過程
環(huán)節(jié)設(shè)計:教師活動、學(xué)生活動、設(shè)計意圖
環(huán)節(jié)一創(chuàng)設(shè)情境
興趣導(dǎo)入首先讓學(xué)生觀看視頻《世界在不斷的變化》
老師解說:這個世界在不斷的變化,有一句很有哲理的話“這個世界唯一沒有變化的就是這個世界一直在改變”。聰明的人類為了在這個不斷變化的世界中生存,想出了很多記錄世界變化規(guī)律的辦法。今天我們就來學(xué)習(xí)一個好辦法,它就是數(shù)學(xué)函數(shù),函數(shù)是研究事物變化規(guī)律的數(shù)學(xué)模型之一。
1看視頻。
2聽老師解說,函數(shù)是研究世界變化規(guī)律的數(shù)學(xué)模型之一。
3了解函數(shù)的作用,對函數(shù)產(chǎn)生興趣。
通過讓學(xué)生觀看視頻,并對學(xué)生講解,讓學(xué)生了解函數(shù)是用來研究事物變化規(guī)律的數(shù)學(xué)模型之一,這樣學(xué)生能更深刻的理解函數(shù)的功能,即激發(fā)了學(xué)生學(xué)習(xí)熱情,又回顧初中學(xué)習(xí)的數(shù)學(xué)函數(shù)的定義。
在某一個變化過程中有兩個變更x和y,在某一法則的作用下,如果對于x的每一個值,y都有唯一的值與其相對應(yīng),就稱y是x的函數(shù),這時x是自變量,y是因變量.
用一個生活實例加深對知識的理解。
實例:到學(xué)校商店購買某種果汁飲料,每瓶售價2.5元,那么購買瓶數(shù)x,與應(yīng)付款y之間存在一種對應(yīng)關(guān)系y=2.5x.瓶數(shù)x在自然數(shù)集中每取定一個值,應(yīng)付款y就有唯一一個值與其對應(yīng),我們可以運用對應(yīng)關(guān)系y=2.5x去進行方便的運算。
在這個例子中,我們發(fā)現(xiàn)自變更x只有在自然數(shù)集中取值才有意義,其實如果我們細心研究所有已知函數(shù),就會發(fā)現(xiàn)確定自變量x的取值范圍,是使用函數(shù)模型描述世界變化規(guī)律的前提.
所以我們重新定義函數(shù),將自變量x的取值范圍用集合D來表示.
函數(shù)的定義:
在某一個變化的過程中有兩個變量x和y,設(shè)變量x的取值范圍為數(shù)集D,如果對于D內(nèi)的每一個x值,按照某個對應(yīng)法則f,y都有唯一確定的值與它對應(yīng)環(huán)節(jié)三
知識總結(jié)
?。?)函數(shù)的概念。
?。?)強調(diào)用函數(shù)來研究事物變化規(guī)律的前提是確定自變量x的取值范圍,即定義域。
學(xué)生回顧本次微課所學(xué)習(xí)的知識。讓學(xué)生回顧本節(jié)課學(xué)習(xí)內(nèi)容,強化本節(jié)課重點,為下節(jié)課打下基礎(chǔ)。
環(huán)節(jié)四實例檢測
實例:文具店出售某種鉛筆,每只售價0.12元,應(yīng)付款額是購買鉛筆數(shù)的函數(shù),當(dāng)購買6支以內(nèi)(含6支)的鉛筆時,請用表達式來表示這個函數(shù).
要求學(xué)生把做題結(jié)果拍成照片,發(fā)到郵箱,及時反饋.學(xué)生練習(xí),并把做題結(jié)果拍成照片,發(fā)到我的郵箱,并通過QQ與學(xué)生進行交流實例鞏固今天學(xué)習(xí)的函數(shù)概念。
【高一數(shù)學(xué)教學(xué)設(shè)計】相關(guān)文章: