圓周角教案3篇
作為一名教師,很有必要精心設(shè)計(jì)一份教案,編寫教案助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量。教案要怎么寫呢?以下是小編精心整理的圓周角教案4篇,僅供參考,大家一起來看看吧。
圓周角教案 篇1
[教學(xué)目標(biāo)]:
知識目標(biāo):能理解分三種情況證明圓周角定理的過程,向?qū)W生滲透化歸思想。
能力目標(biāo):使學(xué)生進(jìn)一步體驗(yàn)通過觀察可以發(fā)現(xiàn)數(shù)學(xué)問題,并通過猜想、類比、歸納可以解決問題,滲透分類轉(zhuǎn)化思想。
情感目標(biāo):注重激發(fā)學(xué)生的積極性,使他們勇于自主探索,樂于與人合作交流,體驗(yàn)探索的快樂和數(shù)學(xué)思維的美感,提高思維的品質(zhì)。
[教學(xué)過程]:
一、以舊引新,看誰連的快
屏顯三個(gè)與圓有關(guān)的幾何圖形:
?。?) 頂點(diǎn)在圓上,兩邊都和圓相交的角。
?。?) 頂點(diǎn)在圓心的角。
?。?)圓上兩點(diǎn)間的部分。要求學(xué)生將他們和相對應(yīng)的概念進(jìn)行連線。
二、 動手游戲,看誰找得多
屏顯游戲規(guī)則:
1、拿出準(zhǔn)備好的紙板,在圓上固定四個(gè)點(diǎn)A、B、C、D。
2、用橡皮筋兩兩連接A、B、C、D四個(gè)點(diǎn)。
3、在連結(jié)的圖形中一共有多少個(gè)圓周角?
4、比一比看哪個(gè)小組連得快,連得多,請各小組作好記錄。
5、完成后進(jìn)行展示,持不同意見的小組可隨時(shí)補(bǔ)充。
?。▽W(xué)生分小組合作完成,教師參與小組活動,給予指導(dǎo),學(xué)生展示找出的圓周角。)
三、 提出問題,引入新課:
問題1:這四大類12個(gè)圓周角中,弧所對的圓周角有多少個(gè)?
問題2:弧ADC所對的圓周角又有幾個(gè)?分別是什么?
問題3:為什么弧所對的圓周角有兩個(gè)?而弧ADC所對的圓周角卻只有一個(gè)?
學(xué)生活動:學(xué)生進(jìn)行小組討論、交流
教師活動:巡視、點(diǎn)撥、評價(jià)、板書
[板書]:性質(zhì)1:一條弧所對的圓周角有無數(shù)個(gè),而每個(gè)圓周角所對的弧是唯一確定的。
四、 動手實(shí)驗(yàn),看誰猜得對
1、問題啟示:圓周角和圓心角是不同的角,并且有不同的性質(zhì),但只要它們對著同一條弧,彼此之間就有著一定的關(guān)系。究竟兩者之間存在著什么關(guān)系呢?下面請看圖形(電腦展示)
學(xué)生活動:小組實(shí)驗(yàn),在白紙上任意畫一個(gè)圓,呼出同弧所對的一個(gè)圓心角和一個(gè)圓周角。利用量角器量圓周角和圓心角的度數(shù),并填寫實(shí)驗(yàn)報(bào)告。
教師活動:巡視、點(diǎn)撥、鼓勵(lì)學(xué)生大膽猜想,激發(fā)學(xué)生的探索精神。
?。◣熒樱拷M派一名代表上臺展示實(shí)驗(yàn)結(jié)果,教師用幾何畫板軟件動態(tài)測量出∠AOB和∠ACB的度數(shù),進(jìn)一步驗(yàn)證學(xué)生的猜想。
五、 細(xì)心觀察,初步探索:
師利用幾何畫板的拖動功能和折紙的方法,直觀形象地演示圓心角和圓周角的位置關(guān)系,讓系餓感受圓心角和圓周角有且只有三種位置關(guān)系:圓心在圓周角的一條邊上;圓心在圓周角的內(nèi)部;圓心在圓周角的外部。
電腦演示:固定圓周角的一邊,使另一邊繞著圓周角的頂點(diǎn)運(yùn)動,同時(shí)將學(xué)生畫的不同情況的圖形進(jìn)行展示。引導(dǎo)學(xué)生進(jìn)一步類比、歸納,逐步滲透分類轉(zhuǎn)化的思想,為后面分三種情況證明打好基礎(chǔ)。
(通過這種形象直觀的教學(xué),使學(xué)生從運(yùn)動的觀點(diǎn)理解知識,通過觀察,在探索圖形變換活動中,發(fā)展幾何直覺,為分情況說理奠定基礎(chǔ)。)
六、 合作探索,突破難點(diǎn)
這是本節(jié)課大段時(shí)間的學(xué)生活動,在這個(gè)過程中引導(dǎo)學(xué)生達(dá)到以下目標(biāo):
1、嘗試從不同角度尋求解決方法,提高解決問題能力。
2、鼓勵(lì)學(xué)生在小組內(nèi)敢于表達(dá)自己的想法和觀點(diǎn)。
3、尊重學(xué)生在解決問題過程中表現(xiàn)出來的水平差異。
4、教師不斷加入學(xué)生中間,成為他們學(xué)習(xí)的合作者,讓學(xué)生感到師生共同探索的快樂。
七、 證明猜想,得出結(jié)論
引導(dǎo)學(xué)生證明猜想,逐步滲透由特殊到一般,分類討論等數(shù)學(xué)思想,充分展示學(xué)生的證明過程。
[師板書]:性質(zhì)2:圓周角等于它所對的弧所對的圓心角的一半。
八、進(jìn)一步探索,完善結(jié)論
性質(zhì)3:同弧或等弧所對的圓心角相等。
九、鞏固定理,初步應(yīng)用
[電腦展示]:例如:OA、OB、OC都是⊙O的半徑,∠AOB=∠BOC,求證:∠ACB≌2∠BCA (圖形略)
證明:∵∠ACB=1∕2∠AOB,∠BAC=1/2∠BOC
∠AOB=1/2∠BOC ∴∠ACB=2∠BAC
?。ㄊ箤W(xué)生在從復(fù)雜的圖形中分解出基本圖形的訓(xùn)練中,培養(yǎng)空間識圖能力。)
十、引導(dǎo)小結(jié),進(jìn)行反思
引導(dǎo)學(xué)生談一談本節(jié)課自己的學(xué)習(xí)體會。
十一、設(shè)計(jì)作業(yè)
1、書面作業(yè):課本第165頁練習(xí)第2題,第166頁習(xí)題24。1復(fù)習(xí)鞏固1、2、3、4題
2、探究作業(yè):課后同學(xué)互助總結(jié)圓心角與圓周角的區(qū)別和聯(lián)系(列表或語言敘述)。
圓周角教案 篇2
教學(xué)目標(biāo):
?。?)掌握圓周角定理的三個(gè)推論,并會熟練運(yùn)用這些知識進(jìn)行有關(guān)的計(jì)算和證明;
?。?)進(jìn)一步培養(yǎng)學(xué)生觀察、分析及解決問題的能力及邏輯推理能力;
?。?)培養(yǎng)添加輔助線的能力和思維的廣闊性.
教學(xué)重點(diǎn):
圓周角定理的三個(gè)推論的應(yīng)用.
教學(xué)難點(diǎn):
三個(gè)推論的靈活應(yīng)用以及輔助線的添加.
教學(xué)活動設(shè)計(jì):
?。ㄒ唬﹦?chuàng)設(shè)學(xué)習(xí)情境
問題1:畫一個(gè)圓,以B、C為弧的端點(diǎn)能畫多少個(gè)圓周角?它們有什么關(guān)系?
問題2:在⊙O中,若=,能否得到∠C=∠G呢?根據(jù)什么?反過來,若土∠C=∠G,是否得到=呢?
(二)分析、研究、交流、歸納
讓學(xué)生分析、研究,并充分交流.
注意:①問題解決,只要構(gòu)造圓心角進(jìn)行過渡即可;②若=,則∠C=∠G;但反之不成立.
老師組織學(xué)生歸納:
推論1:同弧或等弧所對的圓周角相等;在同圓或等圓中,相等的圓周角所對的弧也相等.
重視:同弧說明是“同一個(gè)圓”;等弧說明是“在同圓或等圓中”.
問題:“同弧”能否改成“同弦”呢?同弦所對的圓周角一定相等嗎?(學(xué)生通過交流獲得知識)
問題3:(1)一個(gè)特殊的圓弧——半圓,它所對的圓周角是什么樣的角?
(2)如果一條弧所對的圓周角是90°,那么這條弧所對的圓心角是什么樣的角?
學(xué)生通過以上兩個(gè)問題的解決,在教師引導(dǎo)下得推論2:
推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦直徑.
指出:這個(gè)推論是圓中一個(gè)很重要的性質(zhì),為在圓中確定直角、成垂直關(guān)系創(chuàng)造了條件,要熟練掌握.
啟發(fā)學(xué)生根據(jù)推論2推出推論3:
推論3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角是直角三角形.
指出:推論3是下面定理的逆定理:在直角三角形中,斜邊上的中線等于斜邊的一半.
?。ㄈ?yīng)用、反思
例1、如圖,AD是△ABC的高,AE是△ABC的外接圓直徑.
求證:AB·AC=AE·AD.
對A層同學(xué),讓學(xué)生自主地分析問題、解決問題,進(jìn)行生生交流,師生交流;其他層次的學(xué)生在教師引導(dǎo)下完成.
交流:①分析解題思路;②作輔助線的方法;③解題推理過程(要規(guī)范).
解(略)
教師引導(dǎo)學(xué)生思考:(1)此題還有其它證法嗎?(2)比較以上證法的優(yōu)缺點(diǎn).
指出:在解圓的有關(guān)問題時(shí),常常需要添加輔助線,構(gòu)成直徑上的圓周角,以便利用直徑上的圓周角是直角的性質(zhì).
變式練習(xí)1:如圖,△ABC內(nèi)接于⊙O,∠1=∠2.
求證:AB·AC=AE·AD.
變式練習(xí)2:如圖,已知△ABC內(nèi)接于⊙O,弦AE平分
∠BAC交BC于D.
求證:AB·AC=AE·AD.
指出:這組題目比較典型,圓和相似三角形有密切聯(lián)系,證明圓中某些線段成比例,常常需要找出或通過輔助線構(gòu)造出相似三角形.
例2:如圖,已知在⊙O中,直徑AB為10厘米,弦AC為6厘米,∠ACB的平分線交⊙O于D;
求BC,AD和BD的長.
解:(略)
說明:充分利用直徑所對的圓周角為直角,解直角三角形.
練習(xí):教材P96中1、2
?。ㄋ模┬〗Y(jié)(指導(dǎo)學(xué)生共同小結(jié))
知識:本節(jié)課主要學(xué)習(xí)了圓周角定理的三個(gè)推論.這三個(gè)推論各具特色,作用各異,在今后的學(xué)習(xí)中應(yīng)用十分廣泛,應(yīng)熟練掌握.
能力:在解圓的有關(guān)問題時(shí),常常需要添加輔助線,構(gòu)成直徑所對的圓周角或構(gòu)成相似三角形,這種基本技能技巧一定要掌握.
?。ㄎ澹┳鳂I(yè)
教材P100.習(xí)題A組9、10、12、13、14題;另外A層同學(xué)做P102B組3,4題.
探究活動
我們已經(jīng)學(xué)習(xí)了“圓周角的度數(shù)等于它所對的弧的度數(shù)的一半”,但當(dāng)角的頂點(diǎn)在圓外(如圖①稱圓外角)或在圓內(nèi)(如圖②稱圓內(nèi)角),它的度數(shù)又和什么有關(guān)呢?請?zhí)骄浚?/p>
提示:(1)連結(jié)BC,可得∠E=(的度數(shù)—的度數(shù))
?。?)延長AE、CE分別交圓于B、D,則∠B=的度數(shù),
∠C=的度數(shù),
∴∠AEC=∠B+∠C=(的'度數(shù)+的度數(shù)).
圓周角教案 篇3
教材依據(jù)
圓周角是新課標(biāo)人教版九年級數(shù)學(xué)上冊第二十四章第一節(jié)圓的有關(guān)性質(zhì)的重要內(nèi)容,本節(jié)內(nèi)容依據(jù)新人教版九年級《課程標(biāo)準(zhǔn)》和《教師教學(xué)用書》及《初中數(shù)學(xué)新教材詳解》。
設(shè)計(jì)思想
本節(jié)課是在學(xué)習(xí)了圓心角的定義、性質(zhì)定理和推論的基礎(chǔ)上,由生活實(shí)例引出圓周角,類比圓心角認(rèn)識圓周角,類比圓心角的性質(zhì)探究圓周角定理,精選例題及習(xí)題對本節(jié)內(nèi)容進(jìn)行遷移應(yīng)用。
在教學(xué)過程中本著“以人為本,讓課堂變?yōu)閷W(xué)堂,把時(shí)間和空間更多地留給學(xué)生”為原則,注重學(xué)生的實(shí)踐活動,通過讓學(xué)生作圖、度量、分析、猜想、驗(yàn)證得出結(jié)論,教學(xué)過程中充分利用學(xué)生已有的認(rèn)知水平,由淺入深、逐層遞進(jìn),并能適時(shí)地應(yīng)用直觀教具引導(dǎo)學(xué)生運(yùn)用分類討論及轉(zhuǎn)化的數(shù)學(xué)思想對圓周角定理進(jìn)行證明,化解本節(jié)課的難點(diǎn)。這樣學(xué)生易于接受新知識,也能很快地理解并掌握圓周角定理的內(nèi)容,同時(shí)給學(xué)生自主探索留有很大空間,讓學(xué)生在實(shí)踐探究、合作交流活動中,親身體驗(yàn)應(yīng)用數(shù)學(xué)的樂趣和成功的喜悅,發(fā)展學(xué)生的思維,培養(yǎng)學(xué)生的多種學(xué)習(xí)能力。
教學(xué)目標(biāo)
1.知識與技能
(1)理解圓周角的概念,掌握圓周角定理,并運(yùn)用它進(jìn)行簡單的論證和計(jì)算。
(2)經(jīng)歷圓周角定理的證明,使學(xué)生初步學(xué)會運(yùn)用分類討論的數(shù)學(xué)思想和轉(zhuǎn)化的數(shù)學(xué)思想解決問題。
2.過程與方法
采用“活動與探究”的學(xué)習(xí)方法,由感性到理性、由簡單到復(fù)雜、由特殊到一般的思維過程研究新知識,引導(dǎo)學(xué)生理解知識的發(fā)生發(fā)展過程,并使學(xué)生能應(yīng)用所學(xué)知識解決簡單的實(shí)際問題。
3.情感、態(tài)度與價(jià)值觀
通過學(xué)生探索圓周角定理,自主學(xué)習(xí)、合作交流的學(xué)習(xí)過程,激發(fā)學(xué)生的好奇心和求知欲,并在運(yùn)用數(shù)學(xué)知識解答問題的活動中獲取成功的體驗(yàn),建立學(xué)習(xí)數(shù)學(xué)的自信心。
教學(xué)重點(diǎn)
圓周角的概念、圓周角定理及應(yīng)用。
教學(xué)難點(diǎn)
圓周角定理的探究過程及定理的應(yīng)用。
教學(xué)準(zhǔn)備
學(xué)生:圓規(guī)、量角器、尺子
教師:多媒體課件、活動教具
教學(xué)過程
一、 創(chuàng)設(shè)情景,引入新課
大屏幕顯示學(xué)生熟悉的畫面(足球射門游戲)
足球場有句順口溜:“沖向球門跑,越近就越好;歪著球門跑,射點(diǎn)要選好?!逼渲刑N(yùn)藏了一定的數(shù)學(xué)道理,學(xué)習(xí)了本節(jié)課,我們就可以解釋其中的道理。
二、實(shí)踐探索,揭示新知
?。ㄒ唬﹫A周角的概念
在射門游戲中,球員射中球門的難易程度與他所處的位置B對球門AC的張角∠ABC有關(guān).(教師出示圖片,提出問題)
圖中∠ABC是圓心角嗎?什么是圓心角?圖中∠ABC有什么特點(diǎn)?
?。▽W(xué)生通過與圓心角的類比、分析、觀察得出∠ABC的特點(diǎn),進(jìn)而概括出圓周角的概念,教師引導(dǎo)并板書)
定義:頂點(diǎn)在圓上,并且兩邊都與圓相交的角叫做圓周角。
概念辨析:
判斷下列各圖形中的角是不是圓周角,并說明理由。(圖略)
?。ㄍㄟ^概念辨析,讓學(xué)生理解圓周角的定義,提高學(xué)生的語言表達(dá)能力,教師強(qiáng)調(diào)知識要點(diǎn))
強(qiáng)調(diào):圓周角必須具備的兩個(gè)條件:①頂點(diǎn)在圓上;②兩邊都與圓相交.
(二)圓周角定理
1.提出問題,引發(fā)思考
類比圓心角的結(jié)論:同弧或等弧所對的圓心角相等。提出本節(jié)課研究的問題:同弧或等弧所對的圓周角相等嗎?為了搞清這個(gè)問題,我們可以先研究:同弧所對的圓心角和圓周角的關(guān)系。
2.活動與探究
畫一個(gè)圓心角,然后再畫同弧所對的圓周角。你能畫多少個(gè)圓周角? 用量角器量一量這些圓周角及圓心角的度數(shù),你有何發(fā)現(xiàn)呢?
?。ń處熖岢鰡栴},學(xué)生作圖、度量、分析、歸納出發(fā)現(xiàn)的結(jié)論。)
結(jié)論:(1)同一條弧所對的圓周角有無數(shù)個(gè),同弧所對的任意一個(gè)圓周角都相等。
?。?)同一條弧所對的圓周角等于它所對的圓心角的一半.
由上述操作可以看出:同一條弧所對的任意一個(gè)圓周角都等于該條弧所對的圓心角的一半。
?。▽W(xué)生通過實(shí)踐探究,討論概括出結(jié)論,教師點(diǎn)評)
3.推理與論證
?。?)教師演示活動教具,一條弧所對的圓心角只有一個(gè),所對的圓周角有無數(shù)個(gè),我們沒有辦法一一論證,提出本節(jié)課研究方法:分類討論法。
?。ń處熝菔荆龑?dǎo)學(xué)生觀察圓心與圓周角的位置關(guān)系,學(xué)生觀察、小組交流,最后得出結(jié)論,教師出示圓心和圓周角的三種位置關(guān)系圖片)
(2)分類討論,證明結(jié)論 ① 當(dāng)圓心在圓周角的一條邊上時(shí),如何證明?(從特殊情況入手,學(xué)生通過觀察、分析、討論,證明所發(fā)現(xiàn)的結(jié)論,教師鼓勵(lì)學(xué)生看清此數(shù)學(xué)模型。)
?、诹硗鈨煞N情況如何證明,可否轉(zhuǎn)化成第一種情況呢?
(學(xué)生采取小組合作的學(xué)習(xí)方式進(jìn)行探索發(fā)現(xiàn),教師巡視指導(dǎo),啟發(fā)并引導(dǎo)學(xué)生,通過添加輔助線,將問題進(jìn)行轉(zhuǎn)化,學(xué)生寫出證明過程,并討論歸納出結(jié)論,教師做出點(diǎn)評)
結(jié)論:在同圓中,同弧所對的圓周角相等,都等于該條弧所對圓心角的一半
4.變式拓展,引出重點(diǎn)
將上述結(jié)論改為“在同圓或等圓中,等弧所對的圓周角相等嗎?
?。▽W(xué)生思考、推理、討論、總結(jié)出圓周角定理,教師板書)
圓周角定理: 在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半。
強(qiáng)調(diào):(1)定理的適用范圍:同圓或等圓(2)同弧或等弧所對的圓周角相等(3)同弧或等弧所對的圓周角等于它所對圓心角的一半
?。ń處煆?qiáng)調(diào)圓周角定理的內(nèi)容,學(xué)生思考、默記、熟悉定理,加深對定理的理解)
三、應(yīng)用練習(xí),鞏固提高
1.范例精析:
例:如圖,在⊙O中,∠CBD=30° ,∠BDC=20°,求∠A(圖略)
(鼓勵(lì)學(xué)生用多種方法解決問題,發(fā)散學(xué)生的思維,培養(yǎng)學(xué)生良好的思維品質(zhì),讓學(xué)生書寫推力計(jì)算過程,教師補(bǔ)充、點(diǎn)評、并和學(xué)生一起歸納解法。兩種解法分別應(yīng)用了圓周角定理中的兩個(gè)結(jié)論,進(jìn)一步對本節(jié)課的重點(diǎn)知識熟練深化,同時(shí)又培養(yǎng)了學(xué)生規(guī)范的書寫表達(dá)能力)
2.應(yīng)用遷移:
?。?)比比看誰算得快:(圖略)
?。ū拘☆}既可鞏固圓周角定理,又可培養(yǎng)學(xué)生的競爭意識以適應(yīng)時(shí)代的要求,同時(shí)對回答問題積極準(zhǔn)確的學(xué)生提出表揚(yáng),激發(fā)學(xué)生的學(xué)習(xí)積極性)
?。?)生活中的數(shù)學(xué)
如圖.在足球比賽中,甲帶球向?qū)Ψ角蜷TPQ進(jìn)攻,當(dāng)他帶球沖到A點(diǎn)時(shí),同伴乙已經(jīng)沖到B點(diǎn),這時(shí)甲是直接射門好,還是將球傳給乙,讓乙射門好﹙僅從射門角度考慮﹚(圖略)
?。ㄟx用學(xué)生熟悉的生活材料,讓學(xué)生通過合作交流,討論找出合理的解答方法,通過本小題的練習(xí),使學(xué)生體味到生活離不開數(shù)學(xué),從而激發(fā)學(xué)生應(yīng)用數(shù)學(xué)的意識)
四、總結(jié)評價(jià),感悟收獲
通過本節(jié)課的學(xué)習(xí)你有哪些收獲?(學(xué)生歸納總結(jié),老師點(diǎn)評)
知識:(1)圓周角的定義;
(2)圓周角定理。
能力:觀察、操作、分析、歸納、表達(dá)等能力.
思想方法:分類討論思想、轉(zhuǎn)化思想、類比思想、數(shù)形結(jié)合思想、
五、作業(yè)設(shè)計(jì),查漏補(bǔ)缺
1.課本習(xí)題:P88.1,2,3,P89.5,P124.11
2.在⊙O中,圓心角∠AOB=70°,點(diǎn)C是⊙O上異于A、B的一點(diǎn),求圓周角∠AOB的度數(shù)。
3.生活中的數(shù)學(xué):監(jiān)控器的監(jiān)控范圍是65度,圓形的博物館內(nèi)需要安裝幾盞才能全方位監(jiān)控?(圖略)
?。ㄔO(shè)計(jì)課本習(xí)題與課外拓展作業(yè),不僅可以使學(xué)生對本節(jié)課的知識加以鞏固、提高和查漏補(bǔ)缺,而且讓學(xué)生會用數(shù)學(xué)的眼光和頭腦去觀察和思考世界,達(dá)到學(xué)以致用)
教學(xué)反思
成功之處:本節(jié)課內(nèi)容豐富,結(jié)構(gòu)合理,設(shè)計(jì)精細(xì)。教學(xué)時(shí)能根據(jù)學(xué)生實(shí)際遵循認(rèn)知規(guī)律,由淺入深,循序漸進(jìn),及時(shí)了解學(xué)生的學(xué)習(xí)情況,靈活調(diào)整教學(xué)內(nèi)容。能適時(shí)的用教材又不拘泥于教材,挖掘教材的多種功能,在教學(xué)結(jié)構(gòu)的安排上也體現(xiàn)了新課標(biāo)、新理念,重視學(xué)生自主學(xué)習(xí)、自主探究、合作交流、主動地觀察與思考,各個(gè)環(huán)節(jié)銜接緊密、合理、流暢,教學(xué)效果比較理想。
不足之處:學(xué)生不易理解用分類討論思想證明圓周角定理,在后面的教學(xué)中逐步讓學(xué)生了解分類討論思想在解題時(shí)的應(yīng)用。另外學(xué)生語言表達(dá)的準(zhǔn)確性還需不斷加強(qiáng)。
【圓周角教案】相關(guān)文章:
1.圓周角教案